A Compact Solar Hard X-ray Polarimeter

E. Caroli¹, Wei Fei², R. M. Curado da Silva^{3,4}, O. Limousin⁵, J. M. Maia^{3,6}, Zhang Pin², J. Marques^{1,6}, J. B. Stephen¹, João Fernandes⁷, Nicolas Produit⁸, Ricardo Patrício⁹, José Marques^{3,10}, M. Pinto³, N. Auricchio¹, Adriana Garcia⁷, Paulo Ribeiro⁷

¹IASF - Sezione di Bologna, CNR, Bologna, Italy,

²National Space Science Center, CAS, Beijing, China

³Laboratório de Instrumentação e Física Experimental de Partículas,

Departamento de Fisica da Universidade de Coimbra, Portugal

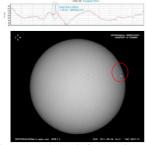
⁴CP3, Université catholique de Louvain, 1320 Louvain-la-Neuve, Belgium

⁵CEA/DSM/Irfu/Service d'Astrophysique, F91191, Gif-sur-Yvette, France

⁶Universidade da Beira Interior, Covilhã, Portugal

⁷Observatório Geofísico e Astronómico da Universidade de Coimbra, Portugal

⁸ISDC, University of Geneva, Switzerland


Active Space Technologies, 3025-307 Coimbra, Portugal

¹⁰Centro de Astrofísica da Universidade do Porto, Portugal

ABSTRACT: The universe has been studied in the hard X-ray domain almost exclusively through spectral and timing variability analysis as well as through imaging techniques. By measuring the polarization angle and The polarization degree of source emissions, the number of observational parameters is increased by two, allowing better discrimination between different models. In order to address the scheduled Chinese Academy of Sciences-ESA 2015 joint call, we propose a compact CdTe based hard X-ray polarimeter with spectro-imaging capabilities optimized for solar physics. Measuring the continuum emission polarization will allow establishing important constraints on the emission models. For example, the beaming level of charged particles which produce the Bremsstrahlung radiation could be inferred by polarization measurements. Furthermore, pion decay models are not likely to be compatible with a high degree of polarization measured. Therefore, solar polarimetry in the 100 keV to 1 MeV energy range might be an exceptional breakthrough for solar physics, opening a new window to interpret solar flare dynamics.

Solar X-ray Polarimetry

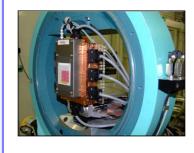
Herein we propose a compact CdTe based hard Xray polarimeter with spectro-imaging capabilities optimized for solar physics, merging the solar physics expertise of Chinese partners with the high energy instrumentation experience of European partners for a common goal. Measuring the continuum emission polarization will establishing important constraints on the emission models. For example, the beaming level of charged particles which produce the Bremsstrahlung radiation could be probed by polarization. Furthermore, pion decay models are not likely to be compatible with a high degree of polarization measured. A typical solar flare emission lifetime may vary from 20 minutes up to 3 hours. The expected polarization level of the whole solar flare loop stands between 10% and 25%.

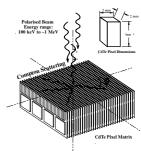
1 - August 9th 2011 solar flare: up, earth magnetic

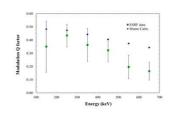
Compton Polarimetry Definitions

The Klein-Nishina cross-section for linearly polarised photons gives us an azimuthal dependency for the

$$\frac{d\sigma}{d\Omega} = \frac{r_0^2}{2} \left(\frac{E'}{E}\right)^2 \left[\frac{E'}{E} + \frac{E}{E'} - 2\sin^2\theta\cos^2\varphi\right]$$


where r_0 is the classical electron radius, E and E' are the energies of the incoming and outgoing photons respectively, θ the angle of the scattered photon and φ is the angle between the scattering plane (defined by the incoming and outgoing photon directions) and incident polarization plane (defined by the polarization vector and the direction of the incoming


The polarimetric performances of an instrument can be evaluated by analysing the double events distribution through polarimetric modulation factor, Q:


$$Q = \frac{N_x - N_y}{N_y + N_x}$$

Here we obtain Q through the orthogonal directions x- and y-axis directions defined over the detector plane, to a polarised beam whose electric vector points in the y direction. Nx and Ny are the number of counts in each of the orthogonal directions.

Monte Carlo and Experimental analysis

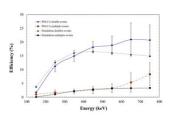


Fig. 3 - Modulation Q factor and double event efficiency obtained by Monte Carlo and ESRF experimental

Instrument Configuration Tantalum Coded Masl 500 mm Plastic Scintillator Support Fig. 2 - Solar polarimeter design

4- Modulation of scattered photons distribution for a Fig. 4- Modulation or scattered photons distribution for a 300 keV incident beam with a 98 % linear polarization at an angle of 0°, for CdTe Caliste-256. A simulated modulation curve is superimposed to the data. The curve in green is the result of a simulation for a non-polarized irradiation: the fluctuations (with respect to average) are multiplied by 3

Azimuthal angle \(\psi \) (degree)

ion angle = 0°, E=300 ke\

Estimated Polarimetric Performances

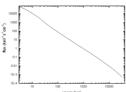


Fig. 5 - Solar flare expected flux emitted by

The MDP (minimum detectable polarization) of a spa polarimeter in a background noise environment with significance can be expressed by [35]:

$$MDP(100\%) = \frac{4.29}{A \cdot \varepsilon \cdot S_F \cdot Q_{100}} \sqrt{\frac{A \cdot \varepsilon \cdot S_F + B}{T}}$$

where Q_{100} is the modulation factor for a 100 % polarized source, ϵ the double event detection efficiency. A the polarimeter detection area in cm², $S_{\rm f}$ the source flux (photons:s²-cm²), B is the background flux (counts/s) and T

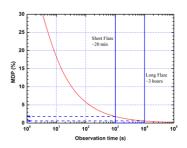


Fig. 6- Estimated minimum detectable polarization (3σ) for a typical solar flare loop in the 100 keV to 1 MeV region.

Conclusion

By both Monte Carlo simulation and prototype experimental testing we showed that a modulation Q100 factor of about 0.5 is obtained for an instrument configuration similar to the solar CdTe polarimeter herein presented. For a typical solar flare emission whose lifetime may vary from ~20 minutes up to ~3 hours, minimum detectable polarization of about 2% and < 1%, respectively, for the same observation times. Therefore, this instrument will potentially allow the measurement of 10 to 25% polarization level estimated for a typical solar flare loop and the breakthrough of new developments in solar physics.

